Theoretical Investigation of the Dispersion Interaction in Argon Dimer and Trimer

نویسندگان

  • Rifaat Hilal
  • Walid M. I. Hassan
  • Shabaan A. K. Elroby
  • Saadullah G. Aziz
چکیده

The ultimate aim of the present work is to establish an acceptable level of computation for the van der waals (vdw) complexes that is able to pick up appreciable amount of dispersion interaction energy, reproduce the equilibrium separation within the acceptable limits and at the same time cost and time effective. In order to reach this aim vdw clusters where pure isotropic dispersion interaction occur, namely, Ar dimer and trime were investigated. Computations using different basis sets and at different levels of theory have been carried out. Three basis sets, namely, the 6-31++G, the 6-311++G and the aug-cc-pvdz basis set, were found superior to all other basis sets used. The high performance and relative small CPU time of the 6-31++G basis set make it a good candidate for use with large vdw clusters, especially those of interest in biology. Three compound methods were applied in the present work, namely G1, G2 and G2 Moller-Plesset (MP2) and the complete basis set method, CBS-Q. These methods failed to detect the attraction dispersion interaction in the dimer. The predicted repulsive interaction seems dominant in all these methods. Some of the recently developed Density Functional Theory (DFT) methods that were parameterized to account for the dispersion interaction were also evaluated in the present work. Results come to the conclusion that, in contrast to the claims made, state-of-theart Density Functional Theory methods are incapable of accounting for dispersion effects in a quantitative way, although these methods predict correctly the inter-atomic separations and are thus considered a real improvement over the conventional methods. BS-SE has been computed, analyzed and discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A computational chemistry investigation of the intermolecular interaction between ozone and isothiocyanic acid (HNCS)

The binding energy and geometrical structure of all the possible dimeric systems of isothiocyanic acid (HNCS) with ozone have been investigated in the gas phase, theoretically. Six minima located on the singlet potential energy surface of the HNCS–ozone system at the MP2 level with binding energies (corrected with ZPE and BSSE) in the range 492.29–531.40 kcal/mol. All intermolecular interaction...

متن کامل

Imaging of the structure of the argon and neon dimer, trimer, and tetramer.

We Coulomb explode argon and neon dimers, trimers, and tetramers by multiple ionization in an ultrashort 800 nm laser pulse. By measuring all momentum vectors of the singly charged ions in coincidence, we determine the ground state nuclear wave function of the dimer, trimer, and tetramer. Furthermore we retrieve the bond angles of the trimer in position space by applying a classical numerical s...

متن کامل

Ab initio potential energy surface and second virial coefficient for Asp-His-Ser trimer

HF level of ab initio calculations with basis-set 6-31G including full counterpoise correction hasbeen applied to compute the AspHis potential with the Ser and HisSer potential with the Asp inAspHisSer trimer. The potential energy surface has a minimum of -16.765 kcal/mol in R1=1.912nm and R2=2.719 nm. The optimum computed curves for two interactions were fitted withintermolecular pair potentia...

متن کامل

The interplay of hydrogen bonding and dispersion in phenol dimer and trimer: structures from broadband rotational spectroscopy.

The structures of the phenol dimer and phenol trimer complexes in the gas phase have been determined using chirped-pulse Fourier transform microwave spectroscopy in the 2-8 GHz band. All fourteen (13)C and (18)O phenol dimer isotopologues were assigned in natural abundance. A full heavy atom experimental substitution structure was determined, and a least-squares fit ground state r0 structure wa...

متن کامل

Geometric and Electronic Structures of Vanadium Sub-nano Clusters, Vn (n = 2-5), and their Adsorption Complexes with CO and O2 Ligands: A DFT-NBO Study

In this study, electronic structures of ground state of pure vanadium sub-nano clusters, Vn (n=2-5), and their interactions with small ligands for example CO and triplet O2 molecules are investigated by using density functional theory (DFT) calibration at the mPWPW91/QZVP level of theory. The favorable orientations of these ligands in interaction with pure vanadium sub-nano clusters were determ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013